
Bisq DAO technical specification


This document is a detailed technical specification for the Bisq DAO and BSQ token.
For a high-level overview and rationale, please see Phase Zero: A plan for
bootstrapping the Bisq DAO.

BSQ token
BSQ tokens are based on Bitcoin and use the Bitcoin blockchain similar to colored coins. We don’t
use any existing colored coin implementation because our use case requires some extra features
which are not supported by those (e.g. decentralized issuance). Besides that, we did not want to
introduce any external dependencies to a company or Altcoin. As Bitcoin is the default base
currency in Bisq anyway, and our requirements can be 100% covered by the basic features Bitcoin
provides we decided to build our custom colored coin solution on top of the Bitcoin blockchain. We
don’t have the ambition to provide a general purpose solution but have designed the model
according to the concrete requirements of Bisq DAO.

Technically a BSQ token is the same as Bitcoin but it adds some additional rules. A BSQ token is
denominated as 100 Bitcoin satoshis so it can be divided in 100 subunits, leading to the smallest
unit of 0.01 BSQ, which is equivalent to 1 satoshi. Bitcoin requires that the minimum amount of a
transaction output is 546 satoshis (dust limit) so for transferring BSQ tokens we inherit that
limitation. The smallest possible BSQ amount to transfer is therefore 5.46 BSQ. As BSQ tokens are
inherently BTC they will have at least the market value of the Bitcoin satoshis. So 1 BSQ = 100
satoshis >= the market value of 0.00000100 BTC, which equals about 0.02 USD at a market price
of 20 000 USD/BTC. The real market value of a BSQ token will be decided by the market once
trading has started and will be the sum of that underlying BTC value with the value traders see in
the Bisq project.

Wallet

The Bisq application provides an integrated BSQ wallet with basic features for receiving and
sending BSQ as well as a transaction history screen. The wallet is based on BIP 44
(https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki) and uses registered coin type 142
(https://github.com/satoshilabs/slips/blob/master/slip-0044.md). This provides extra protection against
the risk that the BSQ wallet could be used accidentally as a BTC wallet (e.g. when restoring from
seed words). To avoid that users need to backup 2 different seed words we use the same seed for



both the BSQ and the BTC wallet though they are stored in different files. To avoid mistakes to mix
up BSQ with normal Bitcoin we use a "B" as address prefix in the user interface. Internally that
prefix does not exist, a BSQ address is a normal BTC address and the transactions are normal BTC
transactions.

BSQ token transactions and balances are represented inside the application but there is also a
web-based BSQ block explorer (https://explorer.bisq.network/).

Validation rules
BSQ are issued either by the genesis transaction or from an issuance transaction. We inherit all the
transaction rules from Bitcoin and add some additional rules. BSQ transactions do not require
OP_RETURN, though it will be used for certain specialized transactions (voting, compensation
requests,…). Beside the ancestry to the genesis or an issuance transaction there is another
important rule: the outputs are parsed in a way that the first outputs are interpreted as BSQ as long
there is sufficient BSQ value available from the inputs. So the order of BSQ and BTC outputs is
essential at the outputs! For inputs the order is irrelevant. Any violation of those rules would make
BSQ invalid.

Fee payments by invalidating tokens

We use that possibility to invalidate BSQ intentionally for "burning" tokens to achieve certain use
cases, like the trade fee payment, or fee payments for certain activities, like voting or compensation
requests. The "burning" is only an invalidation of the BSQ value but the inherent BTC value stays
intact. We use the invalidated BSQ as Bitcoin Satoshis for paying the mining fee. With giving
Satoshis (BTC) to miners we are not restricted by the dust limit so we can "burn" amounts as small
as 0.01 BSQ = 1 Satoshi (0.00000001 BTC).

Validation process

The validation of the BSQ tokens requires the full blockchain data from the block containing the
genesis transaction up to the latest block. To avoid users from needing to download too much data
we use a lite-node mode where all BSQ transactions are delivered by the dedicated block provider
nodes at startup (we use the seed nodes for that but that can/should change later). The verification
is done on the lite node itself (each Bisq application). Every time a new block is created by the
miners, the block provider nodes (they operate as full nodes) broadcast the BSQ transactions
contained in that block to the P2P network. The data is broadcasted by multiple block provider
nodes, and if the data is not consistent the lite node would re-validate from the last snapshot (see
below). Such inconsistency is expected in the case of chain reorganisations
(https://en.bitcoin.it/wiki/Chain_Reorganization) (reorgs), but also delivers more resilience in case a block



provider node is not providing reliable data.

Furthermore we use snapshots of past blocks which will get distributed with the software release to
reduce bandwidth requirements. Thus we do not require to load all BSQ transactions since the
genesis transaction but only since the latest snapshot. At certain block-heights (every 100 blocks)
the nodes are locally persisting snapshots. Those persisted snapshots will be used after a restart to
only request the missing BSQ transactions from the blocks since the latest snapshot up to the
actual chain head.

Users can also run themselves a full node either directly from the Bisq application or as a self
hosted headless full node. To run a full node requires a Bitcoin Core (bitcoind) full node with RPC
enabled. Here are more details on running a full node.

The block provider nodes are operated by the developers and the management for the privilege to
run a default block provider node will be a part of the DAO (see phase 3). As said before the seed
nodes will carry that functionality because those are the first nodes the user connects to so it
improves user experience when the data gets delivered fast at start up.

Implementation phases
We will develop the Bisq DAO in several phases, starting with the bare minimum which consists of:

Token validation

Genesis distribution

Trade fee payment

BSQ transfer and trading

Wallet integration

Blockchain explorer

Support for lite nodes

Emergency measurements

After that phase we start working on phase 2 which includes the core features for management and
the periodic issuance:

Compensation requests



Voting on compensation requests

Issuance of new BSQ

In phase 3 we will focus on the implementation of the arbitration and mediation model. The
security feature for locking up BSQ funds will be made available for the remaining yet not
decentralized areas.

Once that is completed we can consider Bisq as feature complete and fully decentralized.

In phase 4 the meritocratic approach using reputation will become a central element.

Though over time it will turn out that not all of the contributors are interested or equally talented to
make the best decisions and therefore the DAO will require more sophisticated management and
governance features and tools. This late phase will not be discussed in details here but it can be
assumed that it will become a large field covering out-of-system tools for communication, decision
making, project management, delegation (similar to Liquid Democracy), etc.

Phase 1

Genesis distribution

Technically the genesis transaction is a normal BTC transaction with the input from the donation
address and outputs to all contributors. There is no requirement for an OP_RETURN output (though
maybe we use one for engraving a statement to the genesis transaction).

We will use a part of the funds we received via the Bisq donation address
(https://blockchain.info/address/1BVxNn3T12veSK6DgqwU4Hdn7QHcDDRag7) (about 25 BTC) for the 2.5
BTC input to the genesis transaction. Those 2.5 BTC are equivalent to 2.5M BSQ (2 500 000.00) and
will be distributed to all contributors who have provided value to the project according to the value
of their contribution until a certain deadline (when we publish the paper). The call for requests will
be open for a period of 2 weeks.

A contribution is typically one of the following activities:

Software development

Communication (promotion, support,…)

Project management

Conceptual analysis



Input for payment methods

Administration

Translation

Design

Usability testing

Software testing

Market makers

Advice

Others (we will decide on a case to case basis)

Basically any contributed effort exceeding roughly 4 hours will be considered to be included in the
group of receivers for the initial distribution. We will announce that call for requests at the Bisq
Forum (https://bisq.community/) and contributors need to send an email with the required information
to enable verification if the request is justified. They should give a short description and if possible
references to the work (links to GitHub, Forum, etc,…) and provide the spent time and the period
when their contribution happened. We will apply a factor for giving early contributions higher weight
as well as a factor to give long term contributions more weight. This should reflect the higher risk at
earlier periods as well as the higher value of long term contributions. The Bisq team will verify those
requests and if it is justified and the requested amount reasonable we will add the contributor to
the list of receivers. The hours will get multiplied by a factor to the type of contribution (orientated
on typical market salaries). We will then sum up all the weighted hours of all verified contributors
and use the percentage of each contributor related to the overall sum for calculating the amount of
BSQ they will receive from the genesis transaction. So if a contributor has worked 100 hours and
the sum of all contributors is 10 000 hours he will receive 1% of the 2 500 000.00 BSQ from the
genesis transaction, thus 25 000 BSQ.

The way how the factors are applied, how the requested amounts get adjusted and the total sum
will be kept private in the team to protect privacy of the contributors as well as to avoid pointless
discussions. The model for distributing the project’s value is a voluntary act of the Bisq team and
there is no right for a claim of any contributor as we never gave any guarantee or advertised that as
a reward model. We are simply donating back our received donations to those who we think they
deserve to get something in return for their support. Also the contributors can request anonymously
and it is highly recommended to use GPG. This should protect the privacy of the contributors as far
as possible (many will be known due their activity, but at least only the team will know that). For



market makers the verification might get a bit more difficult and we will apply a practical approach
how to deal with that. They need initially provide only the onion address of their Bisq application
and the number of trades they did. If we see a requirement for it there might be an extra software
release where the market makers can prove their claims in a way which protects their privacy but
gives cryptographic evidence of their request.

Trade fee payment

Beginning in Phase 1, trade fees can be paid in BSQ (if the user has sufficient BSQ in his wallet) or in
BTC. The base fee in BTC will initially be 0.002 BTC. If BSQ is used it will be initially 2 BSQ. If the
market price of BSQ is 0.0001 BSQ/BTC the BTC value of the trade fee paid in BSQ would be 0.0002
BTC which is 10% of the fee in BTC so they get a 90% discount. The fee payment is done by making
a part of the BSQ invalid and give that part to miners as satoshis (BTC), thus the BTC value is not
lost but used as mining fee.

A 0.50 BSQ fee payment tx could look like this:

Input 1: 10.00 BSQ

Input 2: 0.1 BTC

Output 1: 9.50 BSQ

Output 2: 0.09950050 BTC

Mining fee: 0.0005 (0.00049950 BTC + 0.00000050 BTC or 0.50 BSQ)

So in that case we only use 9.50 BSQ of the 10.00 BSQ from the input. As the second output is
spending more than the remaining 0.50 BSQ it is invalid as a BSQ output and we consider it as a
BTC output. The remaining 0.50 BSQ which was not used in the first output will be used for the
mining fee, thus reduces the mining fee which is paid from the BTC input (input 2). With that model
we can spend fees as small as 0.01 BSQ or 1 Bitcoin satoshi.

The trade fee will be calculated based on the trade amount and the distance from the market price
(if available). We use the same model for BTC and BSQ fees. A 1 BTC trade with 1% distance from
the market price will use the default fee. If the trade amount is lower or higher we apply a linear
adjustment. 0.1 BTC trade has 10% of the trade fee as long as we don’t reach the minimum value
for the trade fee. For the distance to the market price we use the square root of the percent value,
so 9% would result in a factor of 3. A 16% distance to the market price would cause a 4 times
increase of the trade fee.

The fee is calculated according to this formula:



Math.max(Min. trade fee, Trade amount in BTC x default fee x sqrt(distance to market price in %))

BSQ transfer and trading

The BSQ can be sent and received like normal BTC. To avoid to mix up BSQ with normal BTC and
risking invalidation of BSQ we use a "B" as address prefix in the user interface. So users who only
operate via the UI (as recommended) cannot make mistakes here.



It is definitely NOT recommended to "hack" around with custom created
transactions. If people are doing that they have to be sure to understand all details
of the validation protocol and are fully responsible if case they accidentally burn
their BSQ. This document might not cover 100% of all the details and might miss
updates, only the source code is the real reference. We will not provide support for
such cases and future changes might not take care of special cases used by custom
transactions or implementations.

A BSQ transfer transaction is a normal BTC transaction with mixed inputs of BSQ and BTC. The BTC
part is required for the mining fee payment. There is no OP_RETURN output required.

A transaction to send 10 BSQ could look like this:

Input 1: 30.00 BSQ (BSQ sender)

Input 2: 0.01 BTC (required for mining fee)

Output 1: 10.00 BSQ (BSQ receiver)

Output 1: 20.00 BSQ (BSQ change output back to sender)

Output 2: 0.0095 BTC (change output)

Mining fee: 0.0005

Validation

The validation process of BSQ starts with the genesis transaction. The block height and transaction
ID of the genesis transaction is hard coded and the application (in full node mode) starts to request
the block which contains the genesis transaction from the Bitcoin Core (bitcoind) via RPC calls. It
iterates all transactions until it finds the genesis transaction and adds all transaction outputs as
valid BSQ outputs. From there it will iterate all following transactions and if it finds an input which is
spending one of the unspent BSQ outputs it will verify the outputs to see if they are valid BSQ. The
value of all BSQ outputs must not exceed the sum of all the BSQ inputs. The outputs are sorted by
the index and as soon an output has used up all the available BSQ from the inputs the following



outputs are considered as BTC outputs. If OP_RETURN outputs are used there must be only one
and it must be the last output. The amount at the OP_RETURN output has to be 0.

If there is BSQ value remaining but not sufficient for an output the remaining BSQ becomes invalid.
This is intentionally used for the fee payments. We do not support raw MultiSig transactions (BIP
11) for BSQ. It has to be explored further in future if it is feasible to support that and if there is any
need for that.

Full nodes

A fully validating BSQ node has the requirement to run a Bitcoin Core (bitcoind) node to provide the
blockchain data for verification. The communication is done via RPC
(https://github.com/bisq-network/exchange/blob/master/doc/rpc.md). The details about the setup can be
found in the documentation folder of the source code repository. Every user can run a full node
either from the Bisq application or as a specialized headless node locally or on a server and connect
to that node only.

The full nodes also get a notification from Bitcoin Core at each new block, scan the block for BSQ
transactions and broadcast those to the Bisq P2P network. Every transaction with any BSQ input or
output (issuance) is considered as BSQ transaction. The full node also listens to network messages
from lite nodes which are requesting BSQ blocks from a certain block height. The full node sends
back the list of all blocks since that requested height. The bandwidth requirements for that will
depend on the number of BSQ transactions but rough estimations suggest that there will be no
considerable issues. The Bisq seed nodes are used as full nodes since those are the first nodes to
which a user gets connected and we can use the existing connection to transmit the additional data
early at startup.

Lite nodes

Most users will likely operate in the lite node mode. They have to trust the seed node operators that
they are not all colluding and delivering incorrect data. If at least one operator is honest the lite
node can detect a conflict and would re-validate each block from the last snapshot. The UI will
notify the user about conflicting data from seed nodes.

A lite node requests at startup from the seed node the missing BSQ blocks and then validates those
blocks to achieve a local state of valid and unspent BSQ outputs. At each new block they receive the
broadcasted messages from multiple seed nodes (min. 4 operated by different developers) and
only if all those messages contain the same data the validation will succeed and the block will be
added to the local state. In case of chain splits it can be that one of the seed nodes is on another
chain and conflicting blocks get propagated. This would trigger a re-validation of all blocks from the



latest snapshot for the lite node. The last received block would be considered as the current state
but the user get displayed a message that there are conflicts and it is recommended to wait for
more than one confirmation before considering a BSQ transaction as valid. Only after all full nodes
(seed nodes) have the same state again the lite node will exit the "warning" state. If the user waits
for a sufficiently high numbers of confirmation (4-6) he will not risk that his validation was based on
an orphaned chain and that he could become victim of a double spend.

Snapshots

Every 100 blocks a snapshot mechanism gets triggered. The current state get cloned and kept in
memory and if a previous clone exists the previous one will be persisted. At the next snapshot
trigger event the latest clone will be persisted and a new clone will be cached again. That way the
snapshot is always at least 100 blocks old.

The lite node requests the blocks since the latest snapshot only, so that will be usually max. 200
blocks. Just at the first startup when the lite node has only the snapshot shipped with the binary
the requested blocks might consume a bit more bandwidth.

If we have monthly releases there would be about 4500 blocks in one months but even with that
we expect not more than 1-5 MB of bandwidth to receive the initial blockchain data.

Phase 2
In phase 2 we introduce the periodic voting and issuance cycle.

Periods are defined in block height. Each period is separated with a break of 10 blocks to avoid
issues with reorgs.

Publishing compensation requests (3630 blocks, about 25 days)

Voting: Approve/decline compensation requests (450 blocks, about 3 days)

Voting commitment: The voters publish the decryption key and vote on their vote data
consensus (300 blocks, about 2 days)

Issuance of new BSQ (happens directly and automatically after the vote commitment is
completed)

The full cycle will last 4380 blocks which is about an average month if one block takes in average
10 min. The interval of 1 month has been used in the phase zero and can be considered as
practical.



Compensation request

Contributors can create a compensation request for the work they contributed to the project. This
can be anything what has added value to the project. The contributors have no guarantee that their
request gets accepted. So when they start working they need to be aware that there is no guarantee
for a reward.

If not sure about the value of their work for the community, they should make small work packages
and discuss at the usual communication channels (Keybase, GitHub, Forum,..) to see if the work
they are proposing sparks some interest and support. To use upfront payment with escrow would
make the process much more complicated (who controls the escrow,…). It also reflects the
situation of normal freelance work where work is paid usually after the work is completed and the
reputation of the company provides sufficient base for a trust relationship in most cases.

To make a request, a contributor must include enough BTC to issue the BSQ he’s requesting
(amount requested * 100 satoshis), and pay a 1 BSQ fee to discourage spam. See example
compensation tx for 5000 BSQ below.

There will be a user interface in the application where the contributor fills in a form with the
required data.

The contributor will publish the request to the P2P network after the fee tx is confirmed with 6
confirmations in the blockchain (6 confirmations to avoid issues with reorgs and tx malleability).
The publishing of the compensation request can be done any time during the contribution request
phase. A contributor can file several requests for different work packages. Any compensation
request published after the first phase has ended (once the break starts) will get queued up for the
next phase. Each node will verify the compensation request if it fulfills the rules and only forward
valid requests. The UI will display own requests, the active requests of others as well as a history of
all past requests.

The range for allowed amounts for a compensation request payout will be 50 BSQ to 50 000 BSQ.

A compensation request needs to contain following data

UID (auto generated unique ID)

Contributor’s name or nickname

Title (must not conflict with existing requests)

Creation date



Description (short paragraph)

Link to either GitHub issues or Bisq Forum for detailed description and deliveries

Requested amount in BSQ

BSQ Address

Tx ID

Contributor’s Public key

Version

Data structure of the OP_RETURN compensation request data

1 byte for type (0x01)

1 byte for version (0x01)

20 bytes for hash of payload (using Sha256Ripemd160 from Protobuffer encoded payload)

Verification rules for compensation request transactions

There have to be one OP_RETURN output as last output

The amount at the OP_RETURN output has to be 0

The first byte in the OP_RETURN data needs to be the type byte: 0x01

The second byte in the OP_RETURN data needs to match the nodes version byte: 0x01
(requests made with older versions are invalid)

Size of OP_RETURN data is 22 bytes

There has to be a BSQ input for the fee payment

BSQ used for fee need to be mature

The fee needs to match the fee defined for that cycle (can be changed by voting at each new
cycle)

The block height must be in the correct period

It needs to have at least one output to the address defined in the compensation request data

Contributors need to have the latest version installed when doing a request to be sure to have the
same version as the verification nodes.

A compensation request tx for requesting 5000 BSQ would look like this (fee is 1 BSQ):



Input 1: 30.00 BSQ (needed for fee payment)

Input 2: 0.1 BTC (needed for mining fee; we also need a BTC output)

Output 1: 29.00 BSQ (mandatory change output)

Output 2: 0.00500000 BTC (requested BSQ amount * 100 satoshis goes to BSQ address
defined in request)

Output 3: 0.09450100 BTC (optional BTC change output)

Output 4 (last): OP_RETURN data as defined above

Mining fee: 0.00050000 (0.00049900 BTC from input 2 + 0.00000100 BTC or 1 BSQ from
input 1)

The input 1 needs to be larger than the fee so we enforce a BSQ change output (output 1). All
outputs must not be smaller than the dust limit (2730 Satoshi). We require that the BSQ change is
at input 0 and mandatory to have a clearly defined output index for the issuance output. The BSQ
change output cannot be after the issuance output as that is interpreted as BTC as long it got not
successfully voted. The BTC input at input 2 needs to be at least the sum of the requested BSQ and
the miner fee, in our case 0.00500000 BTC (requested BSQ) + 0.00049900 BTC miner fee. Please
note that the output 2 is at request time interpreted as BTC. Only after the request gets accepted
by voting does the output get interpreted as BSQ and thus the requester has issued himself
BSQ.

Voting

To make the best decisions require a certain level of information and time. Voting in the DAO is an
important service and should be only executed by those who are well informed and take sufficiently
time to make well reasoned decisions. Therefore there will be a considerable fee for voting to de-
incentivize stakeholders who are not sufficiently interested in the project. The fee will be set to 5
BSQ. The stakeholder can vote on a single vote item or on as many as they want.

In the vote period a stakeholder cannot transfer his BSQ tokens which they used for voting,
otherwise they would render their vote invalid. For that reason we should keep the vote period
rather short to not lock up liquidity for too long. There might be an effect on the market price as if
many stakeholder are using their coins for voting there will be less supply and therefore increase
the price. Though that effect should be limited as it is predictable and known in advance and it lasts
just 5 days and the loss of the vote would also be not too problematic for some stakeholders, if they
decide to prefer to trade their tokens instead.



All valid compensation requests from the current cycle are considered for voting. The stakeholder
can choose to accept, decline or ignore a request. For acceptance or decline a simple majority is
sufficient (> 50%).

Initially the voting is mainly for the compensation requests but there will be some flexible (yet to
defined) option for voting on any topic. Over time we might add more specific vote items like
amount of trading fee. To avoid that some stakeholders take benefit of voter apathy and are able to
make changes with a very low stake we require a quorum for each vote item. Those quorum values
will be defined for each vote item. If the vote item does not reach that limit it will be discarded.

We use blind voting to avoid influence of the current state of the votes to voters who have not yet
voted. Without blind voting there would be an incentive to wait for the last moment with voting to
have more information.

The voting will take place in 2 phases. The actual voting phase which lasts about 3 days and the
decryption reveal phase which takes 2 days.

The voting weight is derived from the amount of the BSQ change output. The user can define with
which BSQ amount he wants to vote.

Blind voting phase

The voter encrypts with an encryption key (AES) created per vote his vote data and puts the hash of
the encrypted data in the OP_RETURN of the vote Tx.

The encrypted vote data are broadcasted to the P2P network. To avoid an attack scenario where
the malicious voter could try to disrupt the consensus of received vote data by broadcasting their
vote data to the P2P network at the very end of the period, thus it has higher chances to not arrives
equally at all peers we can use a random break at each voter which makes that attack less effective.

Data structure of the OP_RETURN vote data:

1 byte for type (0x02)

1 byte for version (0x01)

20 bytes for hash of encrypted vote data (using Sha256Ripemd160, proposals are sorted by
txId, data input for encryption is byte array of Protobuffer file of list of proposals)

A vote transaction would look like that (fee is 5 BSQ, stake is 200 BSQ):

Input 1: 300.00 BSQ (needed for fee payment)



Input 2: 0.1 BTC (needed for mining fee)

Output 1: 200.00 BSQ (stake)

Output 2: 95.00 BSQ (optional remaining BSQ change output)

Output 3: 0.09955 BTC (optional BTC change output)

Output 4 (last): OP_RETURN data as defined above

Mining fee: 0.00050000 (0.00045000 BTC from input 2 + 0.00005000 BTC or 5 BSQ from
input 1)

Verification rules for the voting transaction

There have to be one OP_RETURN output as last output

The amount at the OP_RETURN output has to be 0

The first byte in the OP_RETURN data needs to be the: 0x02 (type)

The second byte in the OP_RETURN data needs to match the nodes version byte: 0x01 (votes
made with older versions are invalid)

Size of OP_RETURN data needs to be 22 bytes

There have to be a BSQ input for the fee payment

BSQ used for fee need to be mature

There have to be exactly 1 BSQ output for the voting weight

The fee needs to match the fee defined for that cycle (can be changed by voting at each new
cycle)

The block height must be in the correct period

Contributors need to have the latest version installed when participating in voting to be sure to have
the same version as the verification nodes.

Vote reveal phase

After the 3 days period for voting is over the voters need to make a new transaction which will
reveal their decryption key so that the vote data become readable as well they will vote on their
data view of which vote data they have received from the P2P network. As the P2P network comes
with eventually consistency there is no guarantee that all vote data arrive at all peers. For
calculating the vote result all peers need to have the same collection of vote data to get the same
result. To achieve that the voters will create a sorted list (sorted by hash of data) of vote data and



create a hash of that collection. That hash will be put together with the decryption key into the
OP_RETURN data of the reveal transaction. If there are conflicting vote data views (some voters did
not receive all votes) the majority will be considered valid and the votes from the others will get
ignored for calculation of the vote result.

The input for that transaction must be the BSQ output from the vote transaction.

Data structure of the OP_RETURN vote reveal data:

1 byte for type (0x03)

1 byte for version (0x01)

20 bytes for hash of (encrypted) vote data collection (using Sha256Ripemd160)

16 bytes for decryption key (AES 128 bit)

A vote reveal transaction would look like that:

Input 1: 25.00 BSQ (output 1 from previous vote tx)

Input 2: 0.1 BTC (needed for mining fee)

Output 1: 25.00 BSQ (transfer to voter)

Output 2: 0.0995 BTC (optional BTC change output)

Output 3 (last): OP_RETURN data as defined above

Mining fee: 0.0005 BTC

Calculate the voting result

After the vote reveal phase is over all Bisq users will calculate the vote result.

The user might also have a different vote data collection than voters. To get a consensus about a
unique view of the vote data we look for the majority winner from the vote reveal transactions. We
gather all valid reveal transactions and add up the BSQ inputs to find the winning vote data
collection. In rare case we would have 2 compensation requests collections with the same BSQ
stake we would use the one where the hash converted to a double number results in the smaller
number. If that hash of the winning data collection matches to our own data collection we go on
with the calculation, if not we need to request the missing data from our peers.

Next we decrypt the vote data with the corresponding decryption key. The vote transaction contains
the hash of the vote data so we can assign that to our encrypted P2P network vote data. The reveal
transaction has as input the BSQ output of the vote transaction and contains the decryption key, so



we can use that to decrypt the vote data.

We sum up all vote data items and use the BSQ amount as weight to get a total result.

Issuance of new BSQ

After the vote reveal period and the following break has ended all the compensation requests which
have received >= 50% of the acceptance votes (compared to declined votes) will become valid for
issuance of new BSQ. The second output of the compensation request transaction which has been
interpreted as BTC so far will not be interpreted as valid BSQ, authorized due the voting process.

Verification rules for the issuance transaction

The BSQ output is equal to that what has been defined in the compensation request

The issuance amount needs to be in the range of the min. and max. allowed amount

The block height must have been in the correct compensation request period

The compensation request needs to be accepted in the voting process

Scenarios for gaming the voting process

If a voter would not broadcast his vote data to the P2P network or sends it out of channel to
selected voting peers he has very little chances that his vote will be in the majority data view and
thus renders his vote invalid.

If a voter would not forward received vote data from other peers, he cannot prevent that the vote
data gets distributed by other honest voters as long the P2P network is not partitioned.

A voter could try to broadcast at the very end of the period to increase the chance that some peers
will receive his data before the deadline and some after the deadline, thus they would ignore his
data and that would render different data views. This can be mitigated if we use slightly different
random time for the break so he cannot know which peer has. (Credit to Eyal Ron for that attack risk
and mitigation solution).

As long as the majority of voters are not colluding and are honest the scheme is secure against
manipulation.

Phase 3

Mediation and arbitration system

As discussed in the Arbitration and Mediation System document



(https://docs.google.com/document/d/1DXEVEfk4x1qN6QgIcb2PjZwU4m7W6ib49wCdktMMjLw/edit#) we will
split the dispute process into mediation and arbitration.

Requirements for locked up BSQ funds are initially set to 1000 BSQ for a mediator and 20000 BSQ
for an arbitrator but can be adjusted by voting. At registration the lockup transaction requires 6
confirmations in the blockchain before it is considered valid.

Both need to fulfill basic requirements (availability, quality of work,…). If they would fail on those
they would risk that the locked up funds (or part of it) get confiscated. Mediators can use external
tools for building up reputation. Links to a webpage or services like Bitrated (https://www.bitrated.com)

can provide such a bridge. An application internal reputation system for mediators and arbitrators
might be implemented as well over time but is not planned initially.

Lockup process

To register as mediator or arbitrator one needs to send the required amount of BSQ to an own BSQ
address. This special transaction contains OP_RETURN data which are marking that transaction as
lockup transaction (OP_RETURN type 0x04). Any spend transaction from this address would render
the BSQ invalid as the only valid process to unlock those funds is to use the unlock transaction.

Unlock process

To unlock the funds he makes another transaction to himself with other OP_RETURN data
(OP_RETURN type 0x05) which marks that transaction as an unlock request and will become
available for spending after the lock time is over. The unlocking period is about 2 months (9000
blocks). The delay for unlocking is required to give the community enough time to act in case of
abuse to prepare the steps for a possible confiscation. Therefore the lock period needs to be rather
long.

Confiscation

In case a mediator or arbitrator fails (fraud or severe failure in fulfilling the requirements) anyone
can make a request for confiscating the locked up funds. This request will have a high fee (100
BSQ) to avoid abuse. It will require a very high quorum (100 000 BSQ) and percentage (75%) of
acceptance in the voting process to make sure that this confiscation process will not be abused.

A partial confiscation is also possible. The confiscation will be rolled out as a new release where the
confiscated transaction is hardcoded and renders the locked up BSQ invalid.

By using a software update we add another safety factor to avoid abuse (if users don’t agree they
can simply ignore the update), so users are voting to support the decision for confiscation by



updating the software. If there is not a super majority it would lead to a network fork. These hard
requirements should make sure that only non-contentious cases can be considered for
confiscation.

Revocation

Revoking a registration requires some lead time, because the arbitrator or mediator can be used in
trades or disputes which require some time to get completed. The lead time will be 2 weeks (2000
blocks).

Offers which will get taken after his revocation can only be taken if other arbitrators are selected in
the offer as well. In the worst case an offer which has only selected a revoked arbitrator becomes
invalid which will get communicated to the user so he can remove the offer. That should be a very
rare case if multiple arbitrators are available.

The number of mediators and arbitrators can be influenced by voting by setting the requirements
and payments higher or lower. A change of the requirements will not be applied to past
registrations. The requirement at registration time will stick the lifetime of a mediator or arbitrator.

Arbitrators and mediators get paid like any other contributor via compensation requests. They
payment will be adjusted to lead to a healthy amount of arbitrators and mediators.

Other use cases for locked up funds

There are a few other areas where we will use the same model with locked up BSQ funds to achieve
the security required to open and decentralize those. Additionally there will be a voting process as
those privileges are usually taken by main contributors, so reputation will play an important role
beside the requirement for locked up BSQ funds.

Infrastructure

Seed nodes (they provide also the BSQ transactions for lite nodes)

Market price feed provider node: BitcoinAverage price requires a API key and a monthly fee
payment. Users can use their own node but then they need to acquire an API key from
BitcoinAverage.

All the nodes can be overridden by program arguments, so the user can connect to self hosted
nodes. To get the privilege to run one of the default nodes (hard-coded onion address) it requires to
lock up BSQ funds and to get accepted in the voting process.

Privileged messages



There are a few P2P network messages which require a private key (public key for verification is
hard-coded) to broadcast them. They are mainly in place for emergency cases to be able to limit
damage or to fix problems. Only the update message is used on a regular base. - Send out an
application update message - Send out an alert message - Send a private message to a particular
node - Ban offers by the peers onion address, offer ID, specific payment account data like name,
IBAN,…

All those messages can be ignored by the user when he sets a program argument (in case of abuse
by the key holder the users can go that route and the messages will be ignored and have no effect).

To get the privilege to control a private key for one of those messages it requires to lock up BSQ
funds and to get accepted in the voting process.

Accounts

GitHub account

Bisq domain

Bisq Trademark

Social media accounts (Twitter, Reddit, Keybase, IRC, Facebook, Telegram, Mailing List,
Newsletter)

Most of the social media accounts will be operated by community members. The number of
"official" Bisq accounts will be low.

On Github we will use a similar ACK/NACK commitment model like it is used in the Bitcoin Core
development process. To receive the ACK/NACK privilege will require locked up BSQ funds and to
get accepted in the voting process. Same applies for domain and trademark ownership.

Deployment of the app installer

The application installer is built and signed by the main developers. Any user can run from source
code as well. Again we will use the same model as above for giving the privilege to sign a binary.

Anyone who locked up BSQ for getting one of those privileges will get paid as a contributor for that
service.

Until those features are implemented the project founder and the Bisq foundation will serve as a
trusted host for of those areas.



Phase 4

Reputation based voting

As stated earlier the project should shift the weight for decision making from pure stake based to a
mixed model where reputation will get a higher weight (target is 70% but will be decided by voting
of the stakeholders).

Phase 5

Further governance and management tools

It can be assumed that there will be requirements for further improvements of the management
and governance structure and features. We see it as an open work in progress to try to find the best
model and tools to achieve the best results. Tools for communication, decision making, project
management, delegation and more might evolve over time. Many of those tools might be provided
out of system from other platforms.

Security measurements
To limit risk and possible damage in cases of bugs or exploits we will use several measurements.

Maturity
The newly issued tokens (not genesis tokens) have a maturity period of 1 week (1000 blocks).
During that period they cannot be used for trading (the buyer would not accept them as they are
marked as immature). This maturity period will give more time for reacting in emergency cases.

Limitation of growth of the total supply of BSQ
tokens per month
The total supply of BSQ tokens will be limited by blockchain height. Initially there will be 2 500 000
BSQ from the genesis transaction. We don’t expect more than 100 000 new BSQ being issued per
month. So we use that for the max. monthly growth. This numbers can be adjusted at each release,
so he can adopt to the market price. In case of an exploit where the hacker manages to create new
BSQ the max. possible damage would be limited by that value. Any BSQ which have been created
after exceeding that limit would be considered invalid.

Private key for activating emergency measurements
There will be a private key (similar like the other private keys for privileged P2P network messages)
for sending out an emergency message to all nodes for deactivating BSQ trade. BSQ tokens are



traded only in Bisq. We don’t expect that other exchanges will support BSQ soon as it would require
quite a bit of effort for them to support the protocol.

There will be another emergency message for disabling new issuance of tokens. Like with the other
privileged P2P network messages the users can ignore those emergency messages by a program
argument (in case that the key holder would abuse their power), though in case of a hack users who
have ignored those messages would not get considered in a possible compensation program for
recovering the losses.

Predefined policy how to deal with unexpected
situations
In case of bugs which would cause the loss of BSQ there will be a reimbursement for the victim by
issuing new tokens using the compensation request and voting process (the victim files a
compensation request and if accepted by voting can issue themselves the lost BSQ tokens). It
requires clear evidence and cooperation of the victim. The lost BSQ ("burned") have been taken out
of circulation and by issuing new tokens we add them again, so we do not inflate the total supply by
such a measurement.

Another case would be if tokens get issued by an exploit or hack. They will get confiscated if it is
possible (if they have not been already traded and ownership is not 100% clear anymore). A hard
fork adding code to declare certain transactions invalid would be deployed in such a case.

To avoid later discussions about "code is law" we define with that policy clearly that in case of a
clear violation to the intended behavior of the DAO we will try to fix it as far it is possible.
Confiscation and new issuance are valid tools to achieve that. The network effect and fork risk are in
place to avoid any abuse of those emergency measurements.

Definitions
Some terms are used in different context. The following should make the distinction of their
meaning clearer.

Compensation request

We refer to that term as the request from the user perspective in a conceptual sense.

Compensation request transaction

This is the Bitcoin transaction which will turn into new issuance transaction once the compensation
request got accepted in voting.



Version unspecified
Last updated 2021-04-03 12:50:57 UTC

Compensation request data

This is the data structure published to the P2P network when creating a compensation request. It
gets created when the user fills in a form in the application and confirms to submit a compensation
request.

Voting

We refer to that term as the voting activity from the user perspective in a conceptual sense.

Vote transaction

This is the Bitcoin transaction which contains the hash of the encrypted voting data.

Vote reveal transaction

This is the Bitcoin transaction which contains the hash of the vote data view and the decryption key.

Voting data

This is the data structure published to the P2P network when submitting a vote. It gets created
when the user sets his voting options in the UI and confirms to submit the vote. It is encrypted and
only becomes readable once the voter reveals the decryption key in the vote reveal transaction.


